

#50037E-1 Revised on Nov. 15, 2013

Содержание

Особенности

Характеристики

Стабильность защитных свойств

Параметры печати

Параметры вязкости

Смачиваемость поверхностей

Образование пустот

Свойства

Рекомендации

Koki no clean LEAD FREE solder paste

Стойкая к термоударам бессвинцовая паяльная паста

S3X58-CF100-2

Информация о товаре

Приведенная ниже информация содержит характеристики продукта, полученные в соответствии с нашими собственными процедурами испытаний и не является гарантией результата для конечных пользователей. Пожалуйста, проведите тщательную оптимизацию технологического процесса до начала массового производства.

Содержание

Особенности

Характеристики

Стабильность защитных свойств

Параметры печати

Параметры вязкости

Смачиваемость поверхностей

Образование пустот

Свойства

Рекомендации

Особенности

- Состав сплава припоя Sn 3.0Ag 0.5Cu (SAC305)
- Специальные добавки в составе флюса предотвращают ионную миграцию при изменении параметров окружающей среды
- Обеспечивает отсутствие трещин в остатках флюса на поверхности паяного соединениях после 1000 термоциклов (-30 / +80°C)
- Предназначена для пайки в воздушной среде как компонентов с большими контактными площадками, так и микрокомпонентов, таких как чип элементы типоразмера 1005 и BGA микросхемы с выводами 0.35мм.
- Подходит для использования в автомобильной, промышленной и морской технике.
- Позволяет отказаться от нанесения защитных покрытий.

Характеристики

Содержание

Особенности

Характеристики

Стабильность защитных свойств

Параметры печати

Параметры вязкости

Смачиваемость поверхностей

Образование пустот

Свойства

Рекомендации

Применение		Трафаретная печать			
Наименование		S3X58-CF100-2			
	Состав сплава припоя	Sn96.5, Ag3.0, Cu0.5			
Припой	Температура плавления (°C)	217 - 219			
	Форма частиц	Сферические			
	Размер частиц (µm)	20-38			
Флюс	Содержание галогенов (%)	0			
	Тип флюса*1	ROL0			
	Содержание флюса (%)	11.2±1.0			
	Вязкость* ² (Pa.s)	190±30			
Паяльная	Коррозия медной пластины*3	Пройдено			
паста	Время жизни	> 24 часов			
	Срок хранения (<10⁰С)	6 месяцев			

*1. Тип флюса: В соответствии с IPC J-STD-004A

*2. Вязкость: Вискозиметр Малькома спирального типа 25°С ,1 0 об/мин

*3. Коррозия медной пластины: В соответствии с IPC-ТМ-650-2.6.15

Содержание

Особенности

Характеристики

Стабильность защитных свойств

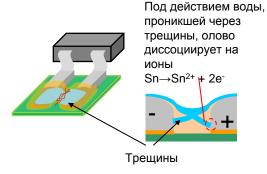
Параметры печати

Параметры вязкости

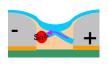
Смачиваемость поверхностей

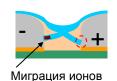
Образование пустот

Свойства


Рекомендации

Стабильность защитных свойств флюса


ТЕХНОЛОГИЯ

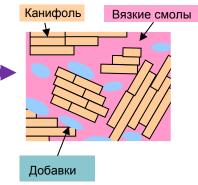

- Механизм возниковения ионной миграции под действием воды

Этап 1

Этап 2 Ионы Sn²+ мигрируют к катоду Этап 3 Ионы Sn^2+ восстанавливаются на катоде $Sn^{2+} + 2e^- \rightarrow Sn$


Наличие конденсата в трещинах в остатках флюса приводит к ионной миграции.

- Решение проблемы



- Кристаллическая

- Хрупкая

- Гибкая в широком диапазоне температур благодаря низкой температуре плавления Tg(<-40°C)

Структура остатков флюса

Вязкие смолы придают текучесть остаткам флюса, предотвращая появление трещин.

S3X58-CF100-2

Гибридный состав флюса (канифоль + вязкие смолы) предотвращает появление трещин в остатках флюса и надежно защищает паяное соединение от контакта с водой.

Содержание

Особенности

Характеристики

Стабильность защитных свойств

Параметры печати

Параметры вязкости

Смачиваемость поверхностей

Образование пустот

Свойства

Рекомендации

Исследование защитных свойств флюса

Метод тестирования	SIR Температура/Влажность	Методика А	Методика В IEC 60068-2-30			
Тестируемая плата	JIS comb board Проводник: 0.318мм Зазор: 0.318мм Трафарет: 0.1мм	IPC-B-25 (E pattern) Проводник: 0.318мм Зазор: 0.318мм Трафарет: 0.1мм	IPC-B-25(E pattern) Проводник: 0.318мм Зазор: 0.318мм Трафарет: 0.1мм			
Параметры среды	Температура: 85°C Влажность: 85% Время: 1008 час	Температура: 10°С~80°С Влажность: 30%~95%RН Количество циклов: 30	Температура: 25°С~55°С Влажность: 25%~93%RH Количество циклов: 6			
Постоянное напряжение	45-50V	50V	50V			
Измеряемое напряжение	100V	100V	100V			

LE

Особенности

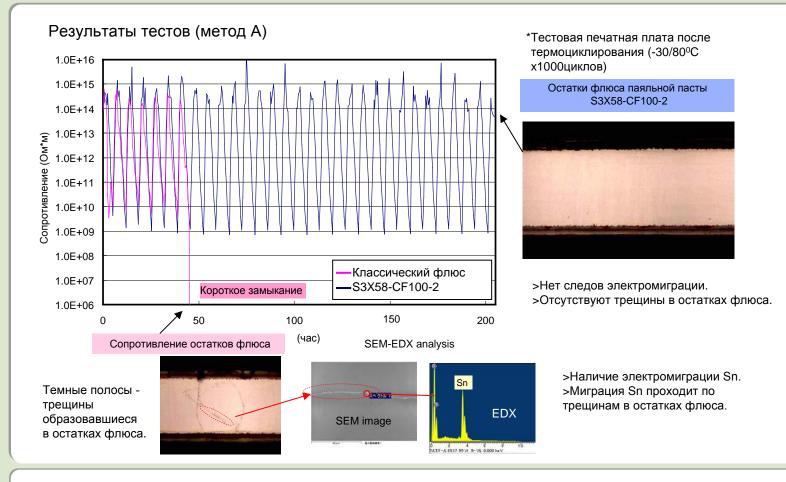
Содержание

Характеристики

Стабильность защитных свойств

Параметры печати

Параметры вязкости


Смачиваемость поверхностей

Образование пустот

Свойства

Рекомендации

Результаты тестов на воздействие росы

В остатках флюса, входящего в состав паяльной пасты S3X58-CF100-2, не образуются трещины, что обеспечивает отсутствие электромиграции Sn, приводящее к появлению коротких замыканий.

Содержание

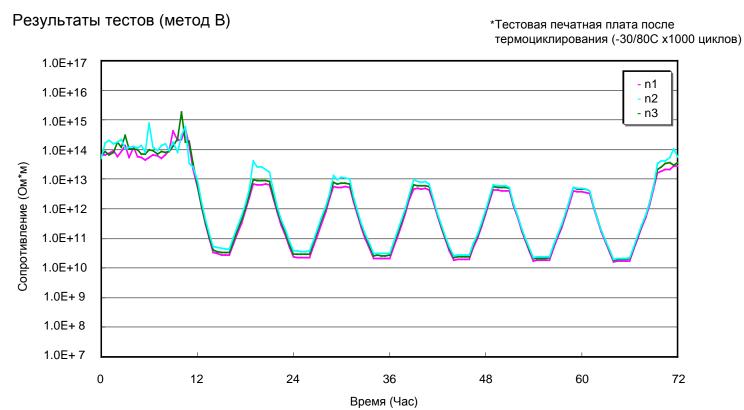
Особенности

Характеристики

Стабильность защитных свойств

Параметры печати

Параметры вязкости


Смачиваемость поверхностей

Образование пустот

Свойства

Рекомендации

Результаты тестов на воздействие росы

* Предварительно проведенное термоциклирование повышает вероятность появления трещин в остатках флюса. Отсутствие трещин в остатках флюса обеспечивает высокое сопротивление.

Остатки флюса, входящего в состав паяльной пасты S3X58-CF100-2, сохраняют высокое сопротивление (более 1.0E+10 Ом*м) на протяжении всего цикла тестирования.

Содержание

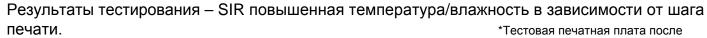
Особенности

Характеристики

Стабильность защитных свойств

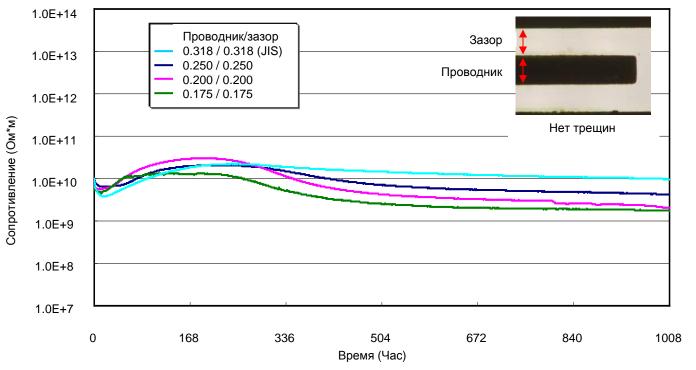
Параметры печати

Параметры вязкости


Смачиваемость поверхностей

Образование пустот

Свойства


Рекомендации

Результаты теста на длительное воздействие повышенной температуры/влажности (SIR)

*Тестовая печатная плата после термоциклирования (-30/80С х1000 циклов)

CHALLENGING NEW TECHNOLOGIES

Остатки флюса, входящего в состав паяльной пасты S3X58-CF100-2, сохраняют высокое сопротивление при печати с шагом 0.175мм.

Содержание

Особенности

Характеристики

Стабильность защитных свойств

Параметры печати

Параметры вязкости

Смачиваемость поверхностей

Образование пустот

Свойства

Рекомендации

Стабильность защитных свойств - Anti-cracking

• Материал: Стеклотекстолит FR-4

• Финишное покрытие : OSP

• Толщина трафарета : 0.15мм (лазерная резка) • Размер апертур : 100% от размера площадки

• Компоненты : QFP шаг - 0,5мм • Посадочные площадки : 1.0-0.15 (печать/зазор) • Оборудование : Конвекционная печь • Среда оплавления : Атмосферный воздух

• Температурный профиль: (См страницу 13)

• Термоцикл : -30/+80°C, 30мин./цикл (1000циклов)

• Камера тестирования : TS-100 (ETAC)

Отсутствует растрескивание остатков флюса после термоциклирования (-30/+80 °C x 1000 циклов).

CHALLENGING NEW TECHNOLOGIES

S3X58-CF100-2

Содержание

Особенности

Характеристики

Стабильность защитных свойств

Параметры печати

Параметры вязкости

Смачиваемость поверхностей

Образование пустот

Свойства

Рекомендации

Длительная печать


Трафарет : 0.15мм, лазерная резка
 Принтер : Model YVP-Xg YAMAHA Motor
 Ракель : Металлический, наклон - 60°

• Скорость печати: 40 мм/с

• Климатические условия : 24~26 °C (50~60%RH)

• Контактные площадки: QFP - шаг 0,4мм, BGA - 0.35.

	1 ^я печать			10 ^я печать			Печать после 200 проходов					
BGA - 0.35		(a) (b)				8)						
QFP - шаг 0,4мм												

Содержание

Особенности

Характеристики

Стабильность защитных свойств

Параметры печати

Параметры вязкости

Смачиваемость поверхностей

Образование пустот

Свойства


Рекомендации

Объем отпечатка на плате при длительной печати (SPI DATA)

Специально разработанные лубриканты обеспечивают хорошее отделение пасты от трафарета в течение длительного времени, что позволяет использовать пасту для монтажа micro-BGA.

CHALLENGING NEW TECHNOLOGIES

Содержание

Особенности

Характеристики

Стабильность защитных свойств

Параметры печати

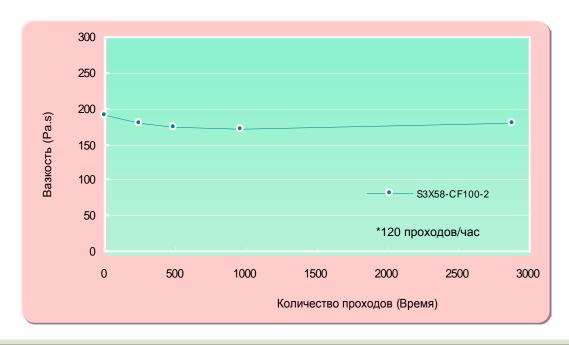
Параметры вязкости

Смачиваемость поверхностей

Образование пустот

Свойства

Рекомендации


Изменение вязкости

Изменение вязкости паяльной пасты при трафаретной печати в течении 24 часов.

•Ракель: Металлический, Угол - 60°

•Скорость печати : 30мм/с. •Длина прохода : 300мм

•Климатические условия: 24~26°C, 40~60%RH

Специально разработанный флюс обеспечивает стабильную вязкость паяльной пасты. Увеличение вязкости паяльной пасты из-за испарения флюса компенсируется уменьшением вязкости за счет химической реакции между окислами в порошке припоя и флюсом во время печати.

Смачиваемость при пайке

Содержание

Особенности

Характеристики

Стабильность защитных свойств

Параметры печати

Параметры вязкости

Смачиваемость поверхностей

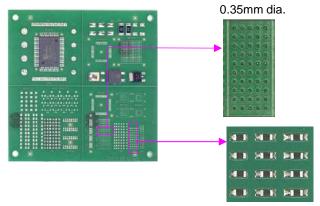
Образование пустот

Свойства

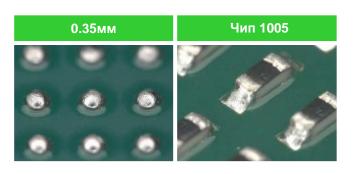
Рекомендации

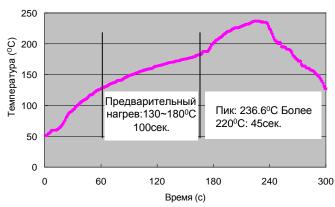
• Материал : Стеклотекстолит FR-4

• Финишное покрытие : OSP


• Трафарет : 0.15мм (лазерная резка)

• Площадки : диаметр 0.35мм


• Компоненты: Чип-резисторы 1005, покрытие - 100%Sn


• Размер апертур: 100% от размера площадки

Оборудование: Конвекционная печь
 Среда оплавления: Атмосферный воздух
 Температурный профиль: График внизу справа

Чип-резисторы 1005 (0402)

В связи с миниатюризацией компонентов, увеличивается отношение площади поверхности отпечатка паяльной пасты к объему, что зачастую приводит к неполной смачиваемости выводов компонентов вследствие окисления припоя во время оплавления. Специально разработанный флюс обеспечивает полное смачивание выводов благодаря минимизации барьерных свойств флюса.

Содержание

Особенности

Характеристики

Стабильность защитных свойств

Параметры печати

Параметры вязкости

Смачиваемость поверхностей

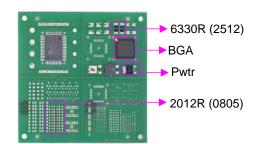
Образование пустот

Свойства

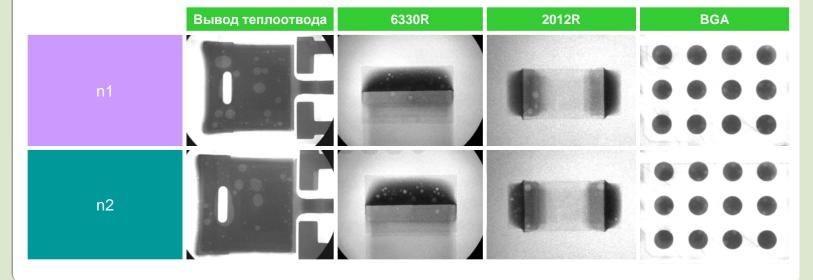
Рекомендации

Образование пустот

• Материал : Стеклотекстолит FR-4


• Финишное покрытие : OSP

• Трафарет : 0.15мм (Лазерная резка) • Размер апертур : 100% от размера площадки


• Компоненты : Вывод теплоотвода транзистора, 2012R,

6330R покрытие - 100% Sn , BGA ball - SAC305

• Оборудование : Конвекционная печь • Среда оплавления : Атмосферный воздух • Температурный профиль : (См страницу 13)

CHALLENGING NEW TECHNOLOGIES

Специально разработанный состав флюса обеспечивает быстрый отвод выделяющихся при оплавлении газов из расплавленного припоя.

Свойства

Содержание

Особенности

Характеристики

Стабильность защитных свойств

Параметры печати

Параметры вязкости

Смачиваемость поверхностей

Образование пустот

Свойства

Рекомендации

Параметр	Значение	Метод			
Время жизни на трафарете	> 24 часов	JIS Z 3284			
Осадка пасты	0.3мм Пройден	JIS Z 3284			
Размер порошка припоя	< 3 типа	JIS Z 3284			
Коррозия медного зеркала	Type L	IPC-JSTD-004			
Коррозия медной пластины	Поройден	IPC-JSTD-004 JIS Z 3284			
Удельное сопротивление остатков флюса SIR	> 1Е+9 Ом*м	IPC-JSTD-004 JIS Z 3284			

Содержание

Особенности

Характеристики

Стабильность защитных свойств

Параметры печати

Параметры вязкости

Смачиваемость поверхностей

Образование пустот

Свойства

Рекомендации

Рекомендации по применению

1. Нанесение

1) Рекомендованные параметры печати

(1) Ракель

1. Форма : Плоский

2. Материал : Резиновый или металлический

3. Угол : 60~70°

4. Давление ракеля : Низкое (Нет затекания под трафарет)

Скорость ракеля : 20~80мм/с.

(2) Трафарет

1. Толщина : 150~120мкм для площадок с шаго**м**65~0.4мм

2. Метод изготовления : Лазер или химическое травление

3. Скорость отделения : 7.0~10.0мм/с.

4. Зазор : Омм

(3) Параметры окружающей среды

Температура
 23~27°С
 Влажность
 40~60%RH

3. Вентиляция : Направленный на трафарет поток воздуха увеличит скорость испарения флюса.

Пожалуста, используйте защитные экраны.

2. Срок хранения

При температуре 0~10°C: 6 месяцев с момента изготовления

* Расшифровка номера лота

Содержание

Особенности

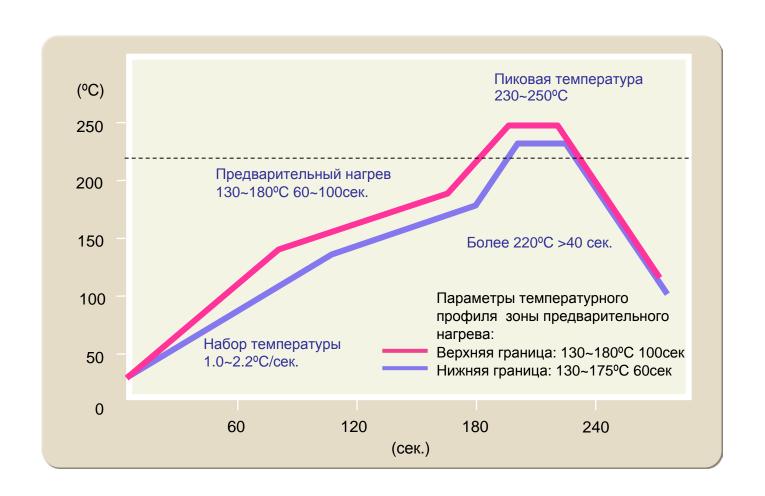
Характеристики

Стабильность защитных свойств

Параметры печати

Параметры вязкости

Смачиваемость поверхностей


Образование пустот

Свойства

Рекомендации

Рекомендации по применению - термопрофиль

Содержание

Особенности

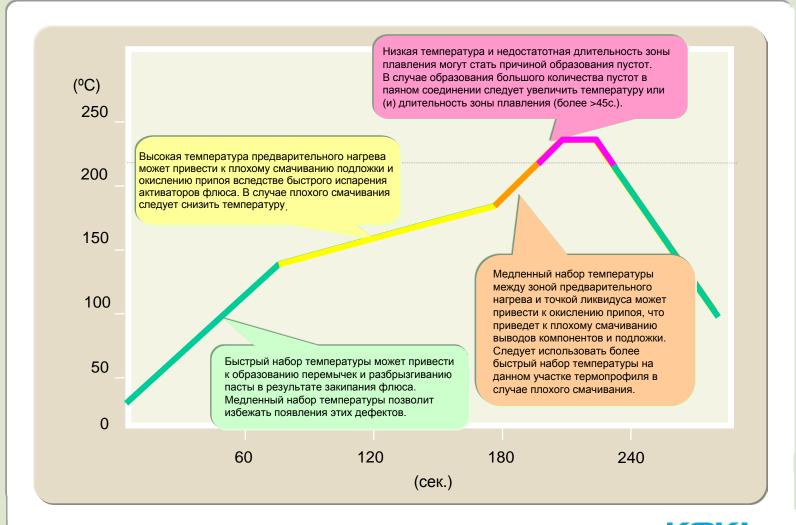
Характеристики

Стабильность защитных свойств

Параметры печати

Параметры вязкости

Смачиваемость поверхностей


Образование пустот

Свойства

Рекомендации

Рекомендации по применению – настройка термопрофиля

